LCOV - code coverage report
Current view: top level - elsa/projectors - Blobs.h (source / functions) Hit Total Coverage
Test: coverage-all.lcov Lines: 93 104 89.4 %
Date: 2025-01-22 07:37:33 Functions: 52 58 89.7 %

          Line data    Source code
       1             : #pragma once
       2             : 
       3             : #include "Error.h"
       4             : #include "elsaDefines.h"
       5             : #include "Bessel.h"
       6             : #include "Luts.hpp"
       7             : #include "Math.hpp"
       8             : 
       9             : namespace elsa
      10             : {
      11             :     namespace blobs
      12             :     {
      13             :         // The devinition given by Lewitt (1992):
      14             :         // \f$
      15             :         // b_{m, alpha, a}(r) = \frac{I_m(\alpha * \sqrt{1 - (r/a)^2)}{I_m(\alpha)} * (\sqrt{1 -
      16             :         // (r/a)^2})^m \f$ for any \f$ 0 <= r <= a \f$.
      17             :         template <typename data_t>
      18             :         constexpr data_t blob_evaluate(data_t r, SelfType_t<data_t> a, SelfType_t<data_t> alpha,
      19             :                                        index_t m) noexcept
      20     9104328 :         {
      21     9104328 :             const auto w = static_cast<data_t>(1) - std::pow(r / a, static_cast<data_t>(2));
      22     9104328 :             if (w >= 0) {
      23     7233828 :                 const data_t Im1 = static_cast<data_t>(math::bessi(m, alpha));
      24     7233828 :                 const data_t arg = std::sqrt(w);
      25     7233828 :                 const data_t Im2 = static_cast<data_t>(math::bessi(m, alpha * arg));
      26             : 
      27     7233828 :                 return (Im2 / Im1) * static_cast<data_t>(std::pow(arg, m));
      28     7233828 :             }
      29     1870500 :             return 0;
      30     1870500 :         }
      31             : 
      32             :         /// @brief Compute line integral of blob through a straight line
      33             :         /// The exact formulations are quite easily derived using the fact, that the line
      34             :         /// integral for a single blob is given by:
      35             :         ///
      36             :         /// @f[
      37             :         /// \frac{a}{I_m(\alpha)} \sqrt{\frac{2 \pi}{\alpha}} \left(\sqrt{1 -
      38             :         /// \left(\frac{s}{a}\right)^2}\right)^{m + 0.5} I_{m + 0.5}\left(\alpha \sqrt{1 -
      39             :         /// \left(\frac{s}{a}\right)^2}\right)
      40             :         /// @f]
      41             :         ///
      42             :         /// Then for a given order substitute I_{m + 0.5}(x) with the elementary function
      43             :         /// representations, as they can be found in Abramowitz and Stegun's Handbook of
      44             :         /// mathematical functions (1972):
      45             :         /// - \f$ I_{0.5}(x) = \sqrt{\frac{2}{\pi x}} \sinh(x)\$f
      46             :         /// - \f$ I_{1.5}(x) = \sqrt{\frac{2}{\pi x}} \left( \cosh(x) - \frac{\sinh(x)}{x} \right)
      47             :         /// \$f
      48             :         /// - \f$ I_{2.5}(x) = \sqrt{\frac{2}{\pi x}} \left(\left(\frac{3}{x^2} +
      49             :         /// \frac{1}{x}\right)\sinh(x) - \frac{3}{x^2} \cosh(x)\right)\$f
      50             :         ///
      51             :         /// Which will result in the below formulations. In theory using the recurrent relations,
      52             :         /// this could be extended to further orders, but is deemed unnecessary for now.
      53             :         ///
      54             :         /// TODO: What about alpha = 0? Check if you find anything in the literature for that.
      55             :         ///
      56             :         /// Ref:
      57             :         /// Distance-Driven Projection and Backprojection for Spherically Symmetric Basis Functions
      58             :         /// in CT - Levakhina
      59             :         /// Spherically symmetric volume elements as basis functions for image reconstructions in
      60             :         /// computed laminography - P. Trampert
      61             :         /// Semi-Discrete Iteration Methods in X-Ray Tomography - Jonas Vogelgesang
      62             :         ///
      63             :         /// @param distance distance of blob center to straight line, in literature often referred
      64             :         /// to as `r`
      65             :         /// @param radius radius of blob, often referred to as `a`
      66             :         /// @param alpha smoothness factor of blob, expected to be larger than 0
      67             :         /// @param order order of Bessel function, often referred to as `m`
      68             :         template <typename data_t>
      69             :         constexpr data_t blob_projected(data_t s, SelfType_t<data_t> a, SelfType_t<data_t> alpha,
      70             :                                         index_t m)
      71      410936 :         {
      72             :             // expect alpha > 0
      73      410936 :             using namespace elsa::math;
      74             : 
      75      410936 :             const data_t sda = s / a;
      76      410936 :             const data_t sdas = std::pow(sda, 2.f);
      77      410936 :             const data_t w = 1.f - sdas;
      78             : 
      79      410936 :             if (w > 1.0e-10) {
      80      406826 :                 const auto arg = alpha * std::sqrt(w);
      81      406826 :                 if (m == 0) {
      82        2376 :                     return (2.f * a / alpha) * std::sinh(arg)
      83        2376 :                            / static_cast<data_t>(math::bessi0(alpha));
      84      404450 :                 } else if (m == 1) {
      85        5560 :                     return (2.f * a / alpha) * std::sqrt(w)
      86        5560 :                            * (std::cosh(arg) - std::sinh(arg) / arg)
      87        5560 :                            / static_cast<data_t>(math::bessi1(alpha));
      88             : 
      89      398890 :                 } else if (m == 2) {
      90      398890 :                     return (2.f * a / alpha) * w
      91      398890 :                            * ((3.f / (arg * arg) + 1.f) * std::sinh(arg)
      92      398890 :                               - (3.f / arg) * std::cosh(arg))
      93      398890 :                            / static_cast<data_t>(math::bessi2(alpha));
      94      398890 :                 } else {
      95           0 :                     throw Error("m out of range in blob_projected()");
      96           0 :                 }
      97        4110 :             }
      98        4110 :             return 0.0f;
      99        4110 :         }
     100             : 
     101             :         template <typename data_t>
     102             :         constexpr data_t blob_projected(data_t s)
     103             :         {
     104             :             return blob_projected(s, 2.f, 10.83f, 2);
     105             :         }
     106             : 
     107             :         /// @brief Compute line integral of blob derivative through a straight line
     108             :         /// The exact formulations are quite easily derived using the fact, that the line
     109             :         /// integral for the derivative of a single blob is given by:
     110             :         ///
     111             :         /// @f[
     112             :         /// - \frac{\sqrt{2 \pi \alpha}}{I_m(\alpha)} \frac{s}{a} \left(\sqrt{1 -
     113             :         /// \left(\frac{s}{a}\right)^2}\right)^{m - 0.5} I_{m - 0.5}\left(\alpha \sqrt{1 -
     114             :         /// \left(\frac{s}{a}\right)^2}\right)
     115             :         /// @f]
     116             :         ///
     117             :         /// By substitution with the above formulas (blob_projected) one can derive the below
     118             :         /// formulations. In theory using the recurrent relations, this could be extended to
     119             :         /// further orders, but is deemed unnecessary for now.
     120             :         ///
     121             :         /// Ref:
     122             :         /// Investigation of discrete imaging models and iterative image reconstruction
     123             :         /// in differential X-ray phase-contrast tomography - Qiaofeng Xu (Appendix B)
     124             :         ///
     125             :         /// @param distance distance of blob center to straight line, in literature often referred
     126             :         /// to as `r`
     127             :         /// @param radius radius of blob, often referred to as `a`
     128             :         /// @param alpha smoothness factor of blob, expected to be larger than 0
     129             :         /// @param order order of Bessel function, often referred to as `m`
     130             :         template <typename data_t>
     131             :         constexpr data_t blob_derivative_projected(data_t s, SelfType_t<data_t> a,
     132             :                                                    SelfType_t<data_t> alpha, int m)
     133      411666 :         {
     134             :             // expect alpha > 0
     135      411666 :             using namespace elsa::math;
     136             : 
     137      411666 :             const data_t sda = s / a;
     138      411666 :             const data_t sdas = std::pow(sda, 2);
     139      411666 :             const data_t w = 1.0 - sdas;
     140             : 
     141      411666 :             if (w > 1.0e-10) {
     142      407550 :                 const auto arg = alpha * std::sqrt(w);
     143      407550 :                 if (m == 1) {
     144        7160 :                     return (-2.0 * s / a) * std::sinh(arg) / bessi1(alpha);
     145             : 
     146      400390 :                 } else if (m == 2) {
     147      400390 :                     return (-2.0 * s / alpha / a) * (std::cosh(arg) * arg - std::sinh(arg))
     148      400390 :                            / bessi2(alpha);
     149      400390 :                 } else {
     150           0 :                     throw Error("m out of range in blob_derivative_projected()");
     151           0 :                 }
     152        4116 :             }
     153        4116 :             return 0.0;
     154        4116 :         }
     155             : 
     156             :         /// @brief For 3D objects we need to compute the directional gradient given by
     157             :         /// @f$ \frac{-g(\left\lVert \vec x\right\rVert)}{\left\lVert \vec x\right\rVert} \vec x^T
     158             :         /// @f$
     159             :         /// where @f$g@f$ is the derivative computed below
     160             :         ///
     161             :         /// As we divide by the argument we have a potential divide by zero. This can be solved by
     162             :         /// moving the division inside g as it cancels out
     163             :         ///
     164             :         /// Compute line integral of blob derivative through a straight line
     165             :         /// The exact formulations are quite easily derived using the fact, that the line
     166             :         /// integral for the derivative of a single blob is given by:
     167             :         ///
     168             :         /// @f[
     169             :         /// - \frac{\sqrt{2 \pi \alpha}}{I_m(\alpha)} \frac{s}{a} \left(\sqrt{1 -
     170             :         /// \left(\frac{s}{a}\right)^2}\right)^{m - 0.5} I_{m - 0.5}\left(\alpha \sqrt{1 -
     171             :         /// \left(\frac{s}{a}\right)^2}\right)
     172             :         /// @f]
     173             :         ///
     174             :         /// By substitution with the above formulas (blob_projected) one can derive the below
     175             :         /// formulations. In theory using the recurrent relations, this could be extended to
     176             :         /// further orders, but is deemed unnecessary for now.
     177             :         ///
     178             :         /// Ref:
     179             :         /// Investigation of discrete imaging models and iterative image reconstruction
     180             :         /// in differential X-ray phase-contrast tomography - Qiaofeng Xu (Appendix B)
     181             :         ///
     182             :         /// @param distance distance of blob center to straight line, in literature often referred
     183             :         /// to as `r`
     184             :         /// @param radius radius of blob, often referred to as `a`
     185             :         /// @param alpha smoothness factor of blob, expected to be larger than 0
     186             :         /// @param order order of Bessel function, often referred to as `m`
     187             :         template <typename data_t>
     188             :         constexpr data_t blob_normalized_derivative_projected(data_t s, SelfType_t<data_t> a,
     189             :                                                               SelfType_t<data_t> alpha, int m)
     190      411634 :         {
     191             :             // expect alpha > 0
     192      411634 :             using namespace elsa::math;
     193             : 
     194      411634 :             const data_t sda = s / a;
     195      411634 :             const data_t sdas = std::pow(sda, 2);
     196      411634 :             const data_t w = 1.0 - sdas;
     197             : 
     198      411634 :             if (w > 1.0e-10) {
     199      407518 :                 const auto arg = alpha * std::sqrt(w);
     200      407518 :                 if (m == 1) {
     201        7144 :                     return (-2.0 / a) * std::sinh(arg) / bessi1(alpha);
     202             : 
     203      400374 :                 } else if (m == 2) {
     204      400374 :                     return (-2.0 / alpha / a) * (std::cosh(arg) * arg - std::sinh(arg))
     205      400374 :                            / bessi2(alpha);
     206      400374 :                 } else {
     207           0 :                     throw Error("m out of range in blob_normalized_derivative_projected()");
     208           0 :                 }
     209        4116 :             }
     210        4116 :             return 0.0;
     211        4116 :         }
     212             : 
     213             :         template <typename data_t>
     214             :         constexpr data_t blob_derivative_projected(data_t s)
     215             :         {
     216             :             return blob_derivative_projected(s, 2.f, 10.83f, 2);
     217             :         }
     218             : 
     219             :         static constexpr double DEFAULT_RADIUS = 2.0;
     220             :         static constexpr double DEFAULT_ALPHA = 10.83;
     221             :         static constexpr index_t DEFAULT_ORDER = 2;
     222             : 
     223             :     } // namespace blobs
     224             : 
     225             :     template <typename data_t>
     226             :     class Blob
     227             :     {
     228             :     public:
     229             :         constexpr Blob(data_t radius, SelfType_t<data_t> alpha, index_t order)
     230             :             : radius_(radius), alpha_(alpha), order_(order)
     231          96 :         {
     232          96 :         }
     233             :         constexpr data_t operator()(data_t s)
     234        9696 :         {
     235        9696 :             return blobs::blob_evaluate(s, radius_, alpha_, order_);
     236        9696 :         }
     237             : 
     238             :         constexpr data_t radius() const { return radius_; }
     239             : 
     240             :         constexpr data_t alpha() const { return alpha_; }
     241             : 
     242             :         constexpr index_t order() const { return order_; }
     243             : 
     244             :     private:
     245             :         data_t radius_;
     246             :         data_t alpha_;
     247             :         index_t order_;
     248             :     };
     249             : 
     250             :     template <typename data_t, size_t N = DEFAULT_PROJECTOR_LUT_SIZE>
     251             :     class ProjectedBlob
     252             :     {
     253             :     public:
     254             :         constexpr ProjectedBlob(data_t radius, SelfType_t<data_t> alpha, index_t order)
     255             :             : radius_(radius),
     256             :               alpha_(alpha),
     257             :               order_(order),
     258      410834 :               lut_([this](data_t s) { return this->operator()<true>(s); }, radius_),
     259             :               derivative_lut_(
     260      410834 :                   [this](data_t s) { return order_ > 0 ? this->derivative<true>(s) : 0; }, radius_),
     261             :               normalized_gradient_lut_(
     262      410834 :                   [this](data_t s) { return order_ > 0 ? this->normalized_gradient(s) : 0; },
     263             :                   radius_)
     264        4108 :         {
     265        4108 :         }
     266             : 
     267             :         template <bool accurate = false>
     268             :         constexpr data_t operator()(data_t s) const
     269      420235 :         {
     270      420235 :             if constexpr (accurate)
     271      410936 :                 return blobs::blob_projected(s, radius_, alpha_, order_);
     272        9299 :             else
     273        9299 :                 return lut_(std::abs(s));
     274      420235 :         }
     275             : 
     276             :         template <bool accurate = false>
     277             :         constexpr data_t derivative(data_t s) const
     278      411762 :         {
     279      411762 :             if constexpr (accurate)
     280      411666 :                 return blobs::blob_derivative_projected(s, radius_, alpha_, order_);
     281          96 :             else
     282          96 :                 return derivative_lut_(std::abs(s)) * math::sgn(s);
     283      411762 :         }
     284             : 
     285             :         constexpr data_t normalized_gradient(data_t s) const
     286      411634 :         {
     287      411634 :             return blobs::blob_normalized_derivative_projected(s, radius_, alpha_, order_);
     288      411634 :         }
     289             : 
     290        1593 :         constexpr data_t radius() const { return radius_; }
     291             : 
     292           0 :         constexpr data_t alpha() const { return alpha_; }
     293             : 
     294           0 :         constexpr index_t order() const { return order_; }
     295             : 
     296     4256114 :         constexpr const Lut<data_t, N>& get_lut() const { return lut_; }
     297             : 
     298     4203132 :         constexpr const Lut<data_t, N>& get_derivative_lut() const { return derivative_lut_; }
     299             : 
     300             :         constexpr const Lut<data_t, N>& get_normalized_gradient_lut() const
     301           0 :         {
     302           0 :             return normalized_gradient_lut_;
     303           0 :         }
     304             : 
     305             :     private:
     306             :         data_t radius_;
     307             :         data_t alpha_;
     308             :         index_t order_;
     309             : 
     310             :         /// LUT for projected Blob
     311             :         Lut<data_t, N> lut_;
     312             : 
     313             :         /// LUT for projected derivative
     314             :         Lut<data_t, N> derivative_lut_;
     315             : 
     316             :         /// LUT for projected normalized gradient
     317             :         Lut<data_t, N> normalized_gradient_lut_;
     318             :     };
     319             : 
     320             : } // namespace elsa

Generated by: LCOV version 1.14