LCOV - code coverage report
Current view: top level - elsa/functionals - L2Squared.h (source / functions) Hit Total Coverage
Test: coverage-all.lcov Lines: 1 1 100.0 %
Date: 2025-01-14 06:38:49 Functions: 2 2 100.0 %

          Line data    Source code
       1             : #pragma once
       2             : 
       3             : #include "DataDescriptor.h"
       4             : #include "Functional.h"
       5             : #include "DataContainer.h"
       6             : #include "LinearOperator.h"
       7             : 
       8             : namespace elsa
       9             : {
      10             :     /**
      11             :      * @brief Class representing the squared l2 norm functional.
      12             :      *
      13             :      * The l2 norm (squared) functional evaluates to \f$ 0.5 * \sum_{i=1}^n x_i^2 \f$ for \f$
      14             :      * x=(x_i)_{i=1}^n \f$.
      15             :      *
      16             :      * @tparam data_t data type for the domain of the residual of the functional, defaulting to
      17             :      * real_t
      18             :      */
      19             :     template <typename data_t = real_t>
      20             :     class L2Squared : public Functional<data_t>
      21             :     {
      22             :     public:
      23             :         /**
      24             :          * @brief Constructor for the l2 norm (squared) functional, mapping domain vector to a
      25             :          * scalar (without a residual)
      26             :          *
      27             :          * @param[in] domainDescriptor describing the domain of the functional
      28             :          */
      29             :         explicit L2Squared(const DataDescriptor& domainDescriptor);
      30             : 
      31             :         /**
      32             :          * @brief Constructor the l2 norm (squared) functional with a LinearResidual
      33             :          *
      34             :          * @param[in] domainDescriptor describing the domain of the functional
      35             :          * @param[in] b data to use in the linear residual
      36             :          */
      37             :         L2Squared(const DataContainer<data_t>& b);
      38             : 
      39             :         /// make copy constructor deletion explicit
      40             :         L2Squared(const L2Squared<data_t>&) = delete;
      41             : 
      42             :         /// default destructor
      43         112 :         ~L2Squared() override = default;
      44             : 
      45             :         bool hasDataVector() const;
      46             : 
      47             :         const DataContainer<data_t>& getDataVector() const;
      48             : 
      49             :         bool isDifferentiable() const override;
      50             : 
      51             :         bool isProxFriendly() const override;
      52             : 
      53             :         /**
      54             :          * The proximal of the squared L2 norm is given as:
      55             :          * @f[
      56             :          * \operatorname{prox}_{\tau f}(x) = \frac{x + 2 \tau b}{1 + 2 \tau}
      57             :          * @f]
      58             :          */
      59             :         DataContainer<data_t> proximal(const DataContainer<data_t>& x,
      60             :                                        SelfType_t<data_t> tau) const override;
      61             : 
      62             :         void proximal(const DataContainer<data_t>& x, SelfType_t<data_t> tau,
      63             :                       DataContainer<data_t>& out) const override;
      64             : 
      65             :         /**
      66             :          * The convex conjugate for the squared l2 norm is given as:
      67             :          * - @f$ f(x)^* = \frac{1]{4} ||x||_2^2 @f$, if no translation is present
      68             :          * - @f$ f(x)^* = \frac{1]{4} ||x||_2^2 + \langle x, b \rangle @f$, if a translation is
      69             :          *   present
      70             :          */
      71             :         data_t convexConjugate(const DataContainer<data_t>& x) const override;
      72             : 
      73             :     protected:
      74             :         /// the evaluation of the l2 norm (squared)
      75             :         data_t evaluateImpl(const DataContainer<data_t>& Rx) const override;
      76             : 
      77             :         /// the computation of the gradient (in place)
      78             :         void getGradientImpl(const DataContainer<data_t>& Rx,
      79             :                              DataContainer<data_t>& out) const override;
      80             : 
      81             :         /// the computation of the Hessian
      82             :         LinearOperator<data_t> getHessianImpl(const DataContainer<data_t>& Rx) const override;
      83             : 
      84             :         /// implement the polymorphic clone operation
      85             :         L2Squared<data_t>* cloneImpl() const override;
      86             : 
      87             :         /// implement the polymorphic comparison operation
      88             :         bool isEqual(const Functional<data_t>& other) const override;
      89             : 
      90             :     private:
      91             :         std::unique_ptr<LinearOperator<data_t>> A_{};
      92             : 
      93             :         std::optional<DataContainer<data_t>> b_{};
      94             :     };
      95             : 
      96             : } // namespace elsa

Generated by: LCOV version 1.14